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A method is described for determining the temperature behavior of 
the thermal conductivity of solid nonmetallic materials. Results of 
calculations based on this method are presented, 

To determine the temperature  behavior of the 
thermal conductivity of dieIectrics and semiconduc- 
tors  in a single experiment,  the following method may 
be used. Two identical specimens of the test material  
are located between a common heater  and blocks with 
reference (known) heat capacities and are heated by 
parallel  heat fluxes, each of which proceeds from the 
heater  through the specimen to the reference (Fig. 1). 
We shall consider the heating rate to be constant. 
Par t  of the heat obtained by the reference blocks goes 
into heating the thermal  insulation surrounding the 
references .  By measuring the temperature  difference 
between the references  in a linear heating process ,  
we can determine the temperature  behavior of the 
thermal  conductivity of the test  material .  

The references  must  have different heat capacities;  
for a large difference in heat capacity, it is conven- 
ient to use one solid and one hollow block of a light 

material, as in [i]. 
To derive the calculation relations we shall carry 

out an analysis of the temperature field in one of the 

specimens, to determine the temperature of contact 

with the solid reference block. We shall first examine 

the ideal case in which the thermal conductivity of the 

thermal  insulation is negligibly small in comparison 
with that of the specimen. Then all the heat passing 
through the specimen goes into heating the reference.  
This situation also applies when there is an ideal 
jacket whose temperature  is exactly equal to that of the 
reference.  

The general heat-conduction equation and the bound- 
ary conditions have the form 

06 (x, ~) kl ~ tl Ix, ~)_. 
O'~ Ox 2 

-),1 s~ L ~ j ~ = .  -- c,, m~ d---~- 

l~(x. O) = to. t~ J~=o =t,,, 

l I (0, ~) - to + b ~, b = const (z). 
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(2) 

The solution of (1) by an operational method, 
after eliminating the exponential t e rms  which decrease  
rapidly with t ime,  gives the temperature  field in the 
specimen the form 

i1 (x ,~)=t ,~+b(~- -[c '2m2 [ E~S~ ~--k~ ~ x---~j.x~ ~" (3) 

The temperature at the boundary of the specimen 

and the reference is 

( c 2 rrt~ l 1 
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Then 
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Writing (4) for the second specimen-reference 

pair, and taking the difference between the expres- 

sions, we find the temperature difference between 

the references, whence 

~"1 = (C2 /7"/2 - -  C~ [772)btl/8 1 ~ [. (5) 

The expression obtained is similar to Yagfarov's 

formula [I] for the cylindrical case. 
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Fig. i. Schematic of the method: i) Speci- 
men; 2) reference blocks; 3) thermM in- 

sulation; 4) heater. 

Thus, the thermal  conductivity of the test mater ia l  
in the absence of heat losses  may be determined 
either f rom the temperature  difference between the 
re ferences ,  as in Yagfarov's  cylindrical  method, or  
f rom the temperature  drop in the specimen. In the 
lat ter  case one specimen and one reference  are stff- 
ficient, but the specimen heat capacity must  be known, 
albeit approximately. 

We shall further  examine a real  case of thermal  
losses from the reference  to the insulation, which 
occurs  unavoidably in the plane model examined. With 
one spec imen-reference  pair  these losses  may be 
sharply reduced by use of a jacket surrounding the 
reference and in contact with the heater.  However, the 
jacket does not fully eliminate heat exchange with 
the reference ,  and it is therefore necessary  to intro- 
duce correct ion t e rms  into the calculation formula. 
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We shall now explain the role of heat Iosses to the 
insulation in the presence of two specimens and two 
references .  

We shall compute the heat loss from the reference 
to the insulation. We shall assume for simplicity that 
this occurs  only through the end of the reference,  
and we shall take the area of the end to be the whole 
area  of contact of the reference with the insulation. 

0 

;3 

x 

Fig. 2. Model when the temperature drop 
in the specimen is neglected: 1) Reference; 

2) insuiation. 

We shall consider the heat flux to the insulating 
layer. For simplicity of calculation we shall assume 
that the temperature  of the reference is equaI to that 
of the heater,  i . e . ,  we shall neglect the temperature  
drop in the specimen (Fig. 2). This assumption is 
valid, since the thermal res is tance of the specimen 
is much less than that of the insulating layer. For the 
insulating layer  the heat conduction equation and the 
boundary conditions have the form 

0r (x, ~) - ks O~ t.~ (x, ~) 
0 : Ox 2 

t~ (0, ~:) = to + b ~, ts (Is, ~) = to, ts (x, O) = to. 

Solving this equation, we find the temperature 
field in the insulating layer  to be 

t3 (x, ~) - -  to = b ~ 13 x + b [ (13 - -  x p  
l 3 [_ 6 ksls 

l,~ ( l  3 - -  X) "1. 
6 k3 ] 

Thus, the temperature  in the insulator is distributed 
according to a cubic law. 

The heat flux at the boundary of the reference and 
the insulator is 

__)~aS30t3(x," Q =__),3S3b [ 16~ g l.~ ] 
�9 Ox *=o s Is 2 -kn " 

We shall calculate the temperature  field in the speci-  
men,  allowing for heat losses to the insulator. We 
return to Fig. 1 and Eq. (1). We replace boundary 
conditions (2) by the following: 

dt2 - - ~ S , [  Ot'(x' ~)] : c , m ,  .--  
L Ox J~=l, d x  --~3S.~b[ ls X 13 ] 

6 k~ 13 2 k s j " 

The solution has the form 

~'3 Sa t [  2k lh  c~ ms + ~1 $1 l~ 

3k~ ~ ~ ' (6) 
6 k113 

i. e . ,  when there are heat losses to the insulator, 
the temperature in the specimen is not distributed 
according to a parabolic law (3), but according to a 
cubic law. 

It may be seen from (6) that when there are heat 
losses ,  we can no longer determine X 1 f rom the tem- 
perature  drop in the specimen. If, however, we use 
a second specimen and a second reference (with 
another value of heat capacity), then the thermal  con- 
ductivity of the specimen is quite simply expressed 
in te rms  of the temperature difference between the 
references.  In fact, using (6), we find 

�9 �9 bl l  ( 1 - -  ~$311 

The factor (1 - ?,3 83 l t / X t S l l 3 )  is close to unity, and 
therefore the previous formula (5) is valid, if 13 >> l 1, 
which usually may be realized. 

In cases in which the above factor differs appreciab- 
ly from unity, it is not difficult to calculate the influ- 
ence of heat loss to the insulation, in the final expres-  
sion for k 1. Replacing X 1 by its value from (5) in the 
given factor, i . e . ,  using the method of successive ap- 
proximations, we obtain 

where 

~ - (c~ m~ - -  c'2 m;) bI1/S~ A t - -  K, 

K = ks $3 ll/$1 l.a. 

The quantity K is determined from calibration 
tes ts ,  it being necessary  to determine K as a function 
of temperature.  In the final expression for X l we 
should also calculate the thermal  res is tances  at the 
contacts of the specimen with the heater  and the 
reference.  Then 

where R K is the total thermal res is tance at the con- 
tacts ,  determined experimentally. For  dielectric 
mater ia ls  the quantity R K may usually be neglected. 

It should be s t ressed  that the insulation surround--  
ing the left and r i gh t r e f e r ences  must be identical 
in propert ies  and dimensions. 

Thus, in the proposed method the need to use a 
jacket drops out. The method is convenient for ma-  
ter ia ls  amenable to mechanical processing or  p r e s -  
sure forming, f rom which identical specimens may 
easily be prepared. 
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The temperature  range suggested is -150 ~ to 
+1000 ~ C. 

At high temperatures  this method has an advan- 
tage over other methods, since it excludes e r ro r s  
associated with the growth of heat losses at increased 
temperature  s. 

The method described, like that of Yagfarov, is 
based on the use of two identical specimens and two 
different references.  However, in distinction from the 
Yagfarov method, the second specimen-reference 
pair  serves  here not only to exclude from the calcu- 
lation formula the self-heat  capacity of the specimen 
(which is inappreciable in the given case), but above 
all to exclude the influence of heat losses f rom the 
reference to the insulator, which are absent in the 
cylindrical  Yagfarov arrangement.  

Notation 

ti(x , ~')--temperature at point x of specimen at 
time T; ~i, ks, ci, ms--respectively, thermal con- 

ductivity, thermal  diffusivity, specific heat, and 
mass  of specimen; /1--specimen thickness; Sl--speci-  
men cross  section area;  b--heating rate;  Atl-- tem- 
perature  drop in specimen; At-- temperature  differ- 
ence between references;  c 2, c2*--specific heats of 
references;  m2, m~*--masses of references ;  t2-- 
temperature of reference;  t3(x, T), k3, k3--respee- 
tively, temperature ,  thermal conductivity, and ther -  
mal diffusivity of insulation; S3--area of contact of 
reference with insulation; /3--thickness of insulating 
layer.  
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